Towards an integrated high resolution TOF PET system

Jean-Francois Genat
University of Chicago

February 28th 2009

Pico-second timing and TOF PET

Pico-second timing of FWHM Δ t can provide:

Coordinate along the 2-photons : FWHM improved by 2D/c∆ t

- Improve image quality,
- Speed up the convergence of the reconstructing algorithms

Best resolution of 500-300ps FWHM, 7.5-4.5cm with LSO or LaBr₃ crystals <1mm transverse (T-lines), centroids in the axial direction

TOF vs No-TOF PET

Surti et al. NSS MIC 2006

Fig. 6. Transverse slices for the reconstructed images of the 35-cm diameter lesion phantom with Non TOF (A) and TOF (B) reconstructions.

TOF: $\Delta x = c \Delta t/2$ Δt due mainly to crystal

Recent progress

INNOTEP Project G Montarou

Monte Carlo assessment of time-of-flight benefits on the LYSO-based discovery with PET/CT scanner

Geramifar, P. et al

Biomedical Imaging: From Nano to Macro, 2008. Volume, Issue, 14-17 May 2008 pp364-367

Potential Advantages of Digitally Sampling Scntillation Pulses in Timing Determination in PET

Xie Quingguo et al IEEE Trans on Nucl Sci 2008

Crystals signals

W. Moses, Oct 2008

Argonne-Chicago Workshop on Fast Timing, Feb 26-28 2009, Jean-Francois Genat

Timing and position resolution limits for PET

-1 Along the γ ray axis

Limited by crystals timing resolution

Lul₃: 125ps resolution with 3 times more photons than LSO, but are too expensive. LaBr₃ provides 350ps resolution at 2/3 less photons, good trade-off, compared to LSO

350ps is 5.2cm FWHM

-2 Transverse

Micro-Channel Plates + transmission lines read with sampling chips in the 10GHz range can provide 10ps timing (laser), so transverse position measurements to 500μ m FWHM, assuming T-lines velocity c/3, and crystal resolution not contributing since two ends signals are correlated. Crystal size quantization to be added:

total is 650 + 500 = 820 μ m FWHM

-3 Axial

Crystal cannot be smaller than 1 x 1mm² (650µ m FWHM)

Fast Photo-detectors

30PEs	Time (FWHM)	Position (FW	Pix size mm ²		
(Ma)PMT	60ps	9.1mm	2" x 2"	6 x 6	
SiPM	70ps	10.6mm	linear array, 32	ch 1 x 1	
MCP	25ps	3.8mm	2" x 2"	1.6 x 1.6	

MCP best for large size, timing and pixel size

Position + time with Transmission Lines

- Pico-second timing provides
 - Fast timing
 - Transmission lines readout.

Transverse position along the line Axial coordinate from centroids

Less electronics channels for large area sensors

 t_1-t_2/t_1+t_2 = transverse position $\sum \alpha_i a_i/\sum \alpha_i$ = axial position

MCP + TLs

Laser @ 50PEs: 70ps FWHM one-side 10ps diff

Timing with laser on 2" x 2" MCPs (TLs on Printed Circuit Board)

Fitting Time resolution v. Light for MCP with Delay Line Readout

T-lines two-ends with 25µ m MCP

 $25~\mu$ m pore MCP signal at the output of a ceramic transmission line Laser 408nm, 50Ω , no amplification

Argonne-Chicago Workshop on Fast Timing, Feb 26-28 2009, Jean-Francois Genat

Signal processing for pico-second timing

- Multi-threshold
- Constant Fraction

Pulse Sampling and Waveform Analysis

MCP + TL (laser)

25um tube, 50 PEs FWHM = 10ps 500 μ m 10um tube FWHM = 8.9ps **450** μ m

NB. Not obtained from crystal signals, but laser fast light source

A MCP based Micro-PET system (H. Frisch)

A PET system with on-detector electronics

Argonne-Chicago Workshop on Fast Timing, Feb 26-28 2009, Jean-Francois Genat

Self-triggered Readout Architecture

Strategy: Extract from the front-end relevant data only

- Sample and overwrite continuously in the 10 GS/s range (analog)
- Digitize in the front-end any activity above a given threshold
 - Using front-end sampling chip triggering capability and optionally
 - Process on front-end with FPGAs to extract time, amplitude
- Send to system crate for processing via a few optical/copper links
- Process data in ATCA System crate
 - Coincidences, reconstruction, calibrations
- Timing distribution from system crate needed with a ~10ps stability
 - Not too critical on a relatively small system

Sampling Chips

State of the art:

		Sampling	Bandwidth	Dyn. range	Depth	PLL	ADC	Trigger
		GHz	GHz	bits			bits	
G. Varner	(Hawaii)	6	1.0	10	1024	no	12	experience
S. Ritt	(PSI)	6	.8	11.5	256	3.9ps	S	no
D. Breton E. Delagne	•		.3	13.4	250	20ps	s no	no

130nm CMOS Timing Sampling chip

- 40 GHz sampling rate
- Analog bandwidth ~ 1.5 GHz
- Triggered mode ←
- Depth 256
- On-chip 10-bit ADC ←

Presently under development a U Chicago

Dataflow

Dataflow

- Assume 64 samples (taken for 1.6 ns at 20GS/s), in nine adjacent crystals
- Assume 1MCps rate, a safety factor of four (noise + system noise)
- Each of four sections linked to one μ TCA crate runs at:

Without sample processing 4M Cps x 2 x 4 layers x 9 crystals x 64 samples x 8bits = 72 Gb/s

With sample processing (FPGA) 4M Cps x 4 layers x 9 crystals x 4 words x 8bits = 4.6 Gb/s

ATCA System

- Use ATCA Advanced Telecom Computing Architecture
 - ATCA with the full sampled data readout option (>70 Gb/s input)
 - Use fibers at 10 Gb/s (Gigabit Ethernet)

- Micro-TCA system may be sufficient in the case of on-detector digital processing (> 4 G/s input)
- A few serial frast cables sufficient

High resolution image output

Conclusion

Use of an integrated PET system making use of Micro-channel Plates sensors, transmission lines readout, custom sampling electronics, and digital signal processing allows:

- Extracting timing to sub-millimeter precision in the transverse dimension with a reduced number of electronics channel,
- Reducing the amount of data to be read and processed off-line by one order of magnitude at least.

Extra slides

10um tube

 Tuning the HV at 2.5 kV to have the same MCP pulse amplitude as the 25um tube at 2kV (30mV)

50PEs, 2.5kV std=3.82ps vs 2.5ps (simulation)

18PEs, 2.5 kV std = 6.05ps vs 7ps (simulation)

